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Low-temperature predictions of a free-spin-wave theory that includes the correct 
spin-wave kinematics for the S= 1/2, quantum Heisenberg ferromagnet, as 
described in a previous paper, are obtained for three dimensions using analytic 
and Monte Carlo techniques. The low-temperature propagator is found to be of 
boson form, and the low-temperature magnetization goes as T 3/2, which agrees 
with the interacting theory at lowest order in T. 

1. I N T R O D U C T I O N  

In a previous paper  (Stoller, 1987a), hereafter  refered to as I, I analyzed 
the kinematical  problem in quan tum spin-wave theory and presented a 
spin-wave state space that  formed a complete  basis. This space reflected 
both  the Bose- and Fermi-like properties o f  spin waves )  

The unique feature o f  this state space is that  the number  o f  k-space 
degrees o f  f reedom is a funct ion o f  the number  o f  excitations. For  example,  
given a multiple excitation state ~P(k~, k2, �9 � 9  kin), consisting of  m excita- 
tions at wave vectors kl ,  k 2 , . . . ,  kin, the volume of  k space within which 
these values o f  kj must  be located is a decreasing funct ion o f  m - - t h e  greater 
the number  o f  excitations, the more constricted are the allowable wavevector  
values to a k-space ne ighborhood  about  the origin. 

In the perturbative thermal  field-theoretic approach  to the Heisenberg 
ferromagnet  the free-spin-wave distribution serves as the propagator .  This 
thermal distribution funct ion gives the relative popula t ion  o f  spin waves at 
wavevector  k and energy ek as a funct ion o f  temperature.  The propaga tor  

IDepartment of Chemistry, University of Texas at Austin, Texas 78712. 
2Bose-like in that excited spin states can have multiple excitations at any given wave vector. 
Fermi-like because only zero or one spin excitation can reside at any position-space lattice 
site for spin 1/2. 

787 

0020-7748/87/0800-0787505.00/0 ~) 1987 Plenum Publishing Corporation 



788 Stoller 

plays the crucial role of  being the initial (approximate) solution to the 
problem about which corrections are computed in powers of the interaction 
Hamiltonian operator. The computation of corrections due to the interaction 
Hamiltonian constitutes the dynamical problem in spin-wave theory. The 
dynamical problem is not considered here. 

It was noted previously that kinematical and dynamical problems can 
be treated separately. It should also be noted that the kinematical problem 
precedes the dynamical problem in that some approximation to spin-wave 
kinematics must be made in order to phrase the dynamical problem. We 
need to have state vectors before we can write the eigenvalue equation. On 
the other hand, we can describe the state space 3 without knowing anything 
about the interactions. 

Having argued that a correct description of the spin-wave state space 
precedes perturbation theory, it is necessary to show that this particular 
state space provides a good starting point for perturbation theory. It must 
be shown that zeroth-order perturbation theory based on this state space 
provides a reasonably accurate description of long-wavelength phenomena 
at various temperatures. 

In this paper  I present analytic and Monte Carlo evidence supporting 
the validity of  the free spin-wave model at low temperatures. At sufficiently 
low temperatures the spin-wave distribution function generates the observed 
leading order behavior of  the magnetization. This shows that free-spin-wave 
theory and the harmonic theory that treats free spin waves as noninteracting 
bosons agree at low temperatures.  In a subsequent paper  (Stoller, 1987b), 
I show that the free-spin-wave model also provides a reasonably accurate 
description of the critical region. The importance of  the low-temperature 
work is twofold. First, it provides a test of  the theory, and second, it provides 
deeper insight into spin systems and a firm foundation for evaluating past 
results and developing future theory. 

In Sections 2.1 and 2.2 the essential properties of  the spin-wave state 
space are developed. In Section 3 I show that the thermal expectation value 
of the number  operator at wave vector k, ~k, is a boson distribution function 
for a system with a particle density of 1/2. In Section 4 this propagator  is 
used to derive the T 3/2 law for the spontaneous magnetization at low 
temperatures. The spontaneous magnetization of the ferromagnet is seen 
to be a quantum phenomenon in the sense of being driven by the condensa- 
tion of zero-wavenumber spinwaves. These analytic results are shown to 
agree with Monte Carlo simulations as presented in Section 5. 

3As described in I, it is found that there is a certain latitude in how one can construct a 
complete state space. The particular form that I am working with is chosen so as to include 
most states from the long-wavelength regime. Here is where the best approximate eigenstates 
are found, due to the weak coupling of spin waves at long wavelengths. 
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2. THE F R E E - S P I N - W A V E  M O D E L  

2.1. The Boson Hamil tonian and the Sum over States 

There are three expressions from I that I use to construct the free-spin- 
wave model. They are 

N~ [ Q(~)/2 , 0(m)/2 ] 
Z : g  Z . . . . . .  

reducedstatespace m=O L.k~=-Q(m)/2 kY=-Q(m)/2 

[ Q ( ) / 2  , __ Q(m)/2 Y, ...] (I.28) • �9 . . 
Uk~=-Q(m)/2 kYm=-Q(m)/2 

Q(m) (N  d - r e + l )  l/d 
• ~ • (I .30) 

2 2 

where the approximate equality means that the value of the right-hand side 
must be adjusted upward or downward to the nearest integer. The relation- 
ship becomes an equality in the thermodynamic limit. And, 

28 = Y~ (dP I d exp(-fl /4B)[~) (I.37) 
qb~ (reduced state space) 

Equation (I.28) says that the sum over states includes all distinguishable 
ways that k-space values can be assigned in an m-boson or spin-wave state, 
where m goes from 0 to N d. Here N is the linear size of the system and 
d = 3 is the number of dimensions. The k space values that can be assigned 
to the excitations lie in the range +Q(m)/2 to -Q(m) /2 ,  which is a function 
of particle number as specified in equation (I.30). 

States (~1 and [~P) are multiparticle spin-wave states; (cb[ and are 
multiparticle boson states. The operator G when sandwiched between boson 
states is defined so as to generate the inner-product matrix (qb'lqb). What 
this means is as follows. Given two sets of wavenumbers {k~, k2, . . .}  and 
{k'~, k~, . . .}  specifying the wavenumbers of the particles in two multi-spin- 
wave states, the inner product  (qb{kl, k2 , . . .  }[dp{k'~, k~,.. .}) is not a delta 
function, i.e., multi-spin-wave states are nonorthogonal. Multiboson states, 
on the other hand, are orthogonal. In order to use them to model spin 
waves, the inner-product operator G is defined with respect to boson states 
so as to satisfy the condition 

(~{k, ,  k2,.. .}l GldP{k~, k2, . . .})  =- (dP{kl, k2,...}la/,{kl, k2,. . .}) 

Carets are used to indicate operators. The reader is referred to I for 
further explanation of these formulas. 

The boson Hamiltonian operator /4B A~ ^i =HB+HB,  used to model the 
Heisenberg permutation Hamiltonian, consists of a free and an interacting 

^ i  part. The free-spin-wave model is defined by setting HB to zero. Because 
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there is no interaction term, the partition function reduces to 
z f r e e  "~ t~ = E (dPlG]~) exp[ - /3E~ 

tYPe (reduced state space) 

The free-spin-wave energy of a state qb{k'l, k'~,...} is 

E~ k~,.. .}) = ~] nkek 
k 

and 

 k=Jj l(1 cos2  ) 
with nk the number of spin waves at wavenumber k and J the value of the 
exchange integral. 

Since the spin-wave inner product is normalized, (~lqb) = (q~l GI c~) = 1, 
and I can ignore the inner-product matrix. This would no longer be the 
case if I included H i ;  therefore, extending the results obtained here will 
require more than just the addition of interactions. In what follows the 
distinction between states constructed using Bose or spin operators is 
insignificant. In this treatment the Bose operators do little more than define 
the noninteracting approximation. Their greater purpose is to simplify 
commutator expressions as arise in higher order perturbation theory. 

The operator I am concerned with is Bk, with respect to which the 
multiparticle states are diagonal. In the noninteracting model the thermal 
expectation value of ~k is the propagator of thermal field theory, defined 
for bosons as q~*q~k, where ~* and q~k are boson creation and annihilation 
operators. The thermal expectation value in the noninteracting approxima- 
tion is 

(nk)~ = Z - '  ~] nk(qb) e x p [ - ~ E ~ 1 6 2  
C a  (reduced state space) 

Note that if we were to consider an operator that was not diagonal in the 
spin-wave basis, we would have to reintroduce the nondiagonal inner 
product. 

The sum over the reduced state space can be rewritten as a sum over 
subspaces of fixed particle number, 

Nd 

E = E Y. (1) 
qb ~ (reduced state space) m=O {~m} 

The sum over the set of m-particle states {qbm} contains all permutationally 
distinct labelings of m particles with wavenumber values k such that I kX'Y'~[ <- 
Q(m)/2 .  

2.2. Consequences of Symmetry 

We now consider a simplification of the sum in equation (1) by returning 
to the localized spin basis. In position space all spin states can be described 
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in terms of some combination of up and down spins. From the symmetry 
of states about the z axis in position space it follows that k-space states 
also have z-axis symmetry. Thus, for every subspace of ( N d / 2 )  -- m excita- 
tions there is a complementary subspace of (Na/2)+m excitations that 
contains the same number  of  states. Due to the spherical symmetry of the 
Hamiltonian this reflection symmetry also holds for the energies of  such 
multiparticle states. For every state of  a given energy in one subspace of 
m < Na/2 there is a state in the complementary subspace of m >  Nd/2 
with the same energy. 

We can picutre the half  state space of rn < Nd/2 particles as constructed 
by applying m spin-wave raising operators to the totally spin-down ground 
state, and the half  state space of m > Na/2 particles as products of  m 
spin-wave lowering operators acting on the totally spin-up ground state. 
When we compare the states in any of these subspaces with the states in 
the complementary subspace we find (1) the correlation properties among 
different spins in the former state and the correlation properties among 
different spins in the later state are exactly inverted with respect to the z 
axis, (2) the energies of  the two states are equal, (3) the total z components  
of  their magnetization are equal in value and opposite in sign and (4) 
complementary states have equal values of  total spin squared. 

The problem that now arises is, if we call the excitations in the 
[ ( N a / 2 )  - rn]-particle subspace "spin waves," what do we call the the 
excitations that comprise the complementary [ ( N a / 2 ) +  m]-part icle sub- 
space? To make the problem more concrete, if a state ~o in the ( N a / 2 )  - m 
subspace contains Vko spin waves at wavenumber  ko is it correct to say that 
the complementary state ebo in the ( N ~ / 2 ) +  m subspace atso has Vko spin- 
waves at ko? The answer is no, because the excitations in the first subspace 
are not of  the same kind as those in the complementary subspace-- they  
cannot be, because the states �9 and cb are orthogonal. 

I f  spin-wave states are defined as a product of  m < Nd/2 spin-wave 
raising operators S~ acting on a spin-down ground state [0), then it can be 
shown that the complementary states, consisting of rn > Na/2 excitations, 
are constructed as a product  of  operators ST_k acting on the state [0), where 

IO) = (S~_o) N~ I0) 

I f  I take the expectation value of ~ko with respect to the previously mentioned 
states (qbo] and [~o) I get Vko, but if I take the expectation value of the same 
operator with respect to the complementary states (Do[ and [Do) I get zero. 
This shows that spin-wave quasiparticles and their complements must be 
considered different species. Calling the complementary particles "anti-spin- 
waves," I have the following rules for how to treat these subspaces in the 
state space sum. 
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First, the state space sum is broken into two parts-- the m < Nd/2  half 
and the m > Na/2 half. The first half consists of the spin-wave states and 
the second half of anti-spin-wave states. The number of spin waves or 
anti-spin waves is always less than or equal to Na/2. Second, if nk is the 
number operator for spin waves and ak that for anti-spin waves, then ~k 
has a zero expectation value when evaluated with respect to anti-spin-wave 
states, and ak has zero expectation value when evaluated with respect to 
spin-wave states. Finally, with regard to an operator that is symmetric about 

A 2 
the z axis, such as the total spin 6 2 = [Y~j Sj] , the thermal expectation over 
spin and anti-spin waves is twice that of the expectation value of 6 2 taken 
over only one of these subspaces. These distinctions between spin and 
anti-spin waves are time-independent because there is no coupling between 
states of different numbers of excitations. 

The rules given above reduce the size of the state space at the expense 
of introducing occasional factors of two. They translate directly into an 
identical set of conditions for the boson representation. Without these rules 
spin-wave perturbation theory would always get wrong answers. That is 
because although the reduction scheme of (1.30) does preserve the equality 
in the number of states in complementary subspaces, it does not preserve 
the symmetry in their energies, as shown in the following example. 

Consider the situation that exists if I do not distinguish spin and 
anti-spin-waves and instead just impose the wavenumber cutoff of equation 
(1.30). I examine the spectra of the two subspaces of rn = 1 and m = N d - 1 
spin-wave states in one dimension. Equation (I.30) says that a single spin 
wave can have any wavenumber between - N / 2  and +N/2,  that is, any 
value in the first Brillouin zone. On the other hand, spin waves in the 
(N  d -1)-particle subspace must carry wavenumber 0 or 1 [+Q(N d -1 ) /2  
is shifted by +1/2  in order to apply to the finite system in this case]. The 
spectrum of the one-spin-wave space goes as ek, which is proportional to 
the cosine of k, while the spectrum of the N a - 1  subspace goes as nk=le~, 
which is linear. The spectral symmetry of these two subspaces has not been 
preserved. As a result, the thermal expectation value of a symmetric quantity 
will be skewed in the positive or negative z direction. 

By applying the rules given above, I generate the following formulas: 

Nd/2 Nd/2 

= Y Z +  2 • (2) 
~ E ( r e d u c e d  s ta te  space )  m = O  {qbm} rh ~ 0  {(~,-n} 

( n k ~ o ) r  = t. m = o  ~ * , . t  

x 2 2 2 e x p [ - ~ E ( ~ m ) ]  (3) 
m = O  {(kbm} 
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~2 [(nr)z+(nk>~] = 2  Z (nk>, (4) 
k#O k#O 

The summations are taken with respect to states in either spin or Bose 
representations. 

3. THE ANALYTIC F O R M  OF THE P R O P A G A T O R  AT LOW 
TEMPERATURES 

I approximate the value of the sum over states at low temperature by 
replacing the s~al with the single state that contributes most, This technique, 
borrowed from ensemble theory, gives accurate results when the total 
additional contributions from other states is small. This will be seen to be 
the case at low temperatures.  

Begin the reduction by considering just spin waves and dividing the 
state sum into subsums over states with fixed total energy G and particle 
number  rn < N d / 2 .  Note that I shall always neglect contributions to the 
summation limits that go as N -1, such as occur depending on whether the 
number  of  spins is odd or even. These effects vanish in the thermodynamic 
limit. We have 

= Z  1 nk 2 e-~C 2 2 2 (nk)~,. (5/ 
0 13 G m = O  {~am} k ~ 0  

where E(~M)------G and (rtk)Gr n ----(~MI~kl~M)" The sum of (nk)Gm o v e r  

{~P~,,} will be replaced with the expectation value of tSk taken with respect 
to that state r that dominates the sum. This state is found using the 
standard combinatoric arguments for a boson microcanonical ensemble 
(Huang, 1963). The energy spectrum is divided into cellsj  = 1, 2 , . . .  contain- 
ing gl,  g 2 , . . ,  k-levels each cell is assigned an energy that is the average 
of  the free-spin-wave energies over the wavenumbers in that cell. I assume 
that (1) energy differences between cells are much smaller than the energies 
of  the cells, (2) the sum of  the energies of  the spin waves in a cell for any 
state in the set {~c,,} is much less than the total energy of the state G, and 
(3) for states in { ~ m }  the total number  of  spin waves for k values within 
any of the cells is much less than m, except for occupation numbers at 
k = 0. These conditions hold generally in the thermodynamic limit. 

Using the average energy of a cell as ej : g f l  ~kc{j} Ek, where gj is the 
number  of  levels in the j th  celt and {j} is the set of  k-levels in the j th  cell, 
we obtain for these conditions 

le~- ej+,[ << ej 

nkSk<< Gfor  all n k specified by �9 ~ {~c,.} (6) 
k~{j} 

nk<< mfor  all ~ E  {~Gm} and k #  0 
k~{j} 
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Given a spin-wave distribution with nj spin waves in cell j, the number 
wj of distinct quantum states that can be obtained by different assignments 
of the nj spin waves to the gj levels is 

_ (n~+g j -  1)! 
~oj- n~!(gj- 1)! 

The total number of different quantum states that can be constructed 
from a set of nj is W{nj} = Hj oJj. The set of values of nj that contributes 
with the greatest number of  states, { r~j}, is obtained by maximizing In[ W{nj}] 
subject to the constraints ~j nj = m and Y~j njej = G. The factorials are 
approximated using Stirling's formula. The variation of 

[ ln W { n ~ } + a ( ~ n j e j - G ) + y ( ~ n j - m ) ]  

is taken with respect to nj, and set to zero. The result, as found in many 
statistical mechanics textbooks (e.g., Huang, 1963, p. 193), for the occupa- 
tion number in the j ' th  cell that characterizes the most strongly contributing 
partition is 

~j( Grn ) = gJ y+ote e ~ - 1  

where y and t~ are Lagrange multipliers determined by ~j ~j (Gm)  = m, and 
Y,j ~j ( G m )  ej = (3. The energies ek are taken to be equal in this approximation 
for all k's in the j th  group. The r~k(Gm) are then evenly distributed within 
the cell and ~k(Gm)  = g j l ~ j ( G m ) .  As a result, I have 

1 
~k(Gm) = e~+~k_ 1 (7) 

with 

Y. ~k (Gm)  = m, E nk (Gm)ek  = G (8) 
k = 0  k = 0  

Equation (7) is the boson distribution for a system of m particles at a 
temperature a. The sums over k in (8) are bounded by - Q ( m ) / 2  and 
+ Q ( m ) / 2  in accordance with the reduced k-space condition of equation 
(I.30). 

Replacing the sum of expectation value with the expectation value in 
the most probable state is justified by the strong peak in contributions about 
the most probable value. The smallness of contributions away from this 
peak is the property that justifies the Bose distribution for a microcanonical 
system away from a phase transition. Equation (7) is a valid approximation 
as long as a is not near a critical point for the present model, which is 
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found numerically to occur at 1.95J/kB. Therefore, it is safe to use the 
most-probable-state approximation for the propagator  at low temperatures. 
In the critical region, however, the thermal expectation value does receive 
large contributions from states whose phase space points are outside the 
neighborhood of the most probable state. The neglect of these states, or 
fluctuations as they are referred to in ensemble theory, makes the most- 
probable-state propagator  inaccurate near Tc. 

Before replacing the sums (nk}om over {~om} with flk(Gm) the contribu- 
tions from different values of  G and m must be weighted to account for 
the different number  of  states in these subsets. For instance, if there are 
twice as many states in the sum over {cbo,.} as in the sum over {@o,,.,}, 
then the contribution of r~k(Gm) must be twice that of  ~k(G'rn'). The relative 
weight for each term is the proportion of  states in the (G, m) subspace 
relative to the total number  of  states; this ratio is given by Ro,. /a. ,  

E 
{'~o.,} eGm/.ll Y E 

Gm {~Gm} 

E E E 
c {@o.,} {~G~} 

Gm {@Gin} G {~'0~} 

= Rm/anRom/m (9) 

The factoring of Rom/.. is accomplished by multiplying and dividing by 
the total number  of  states of  fixed total particle number  m. Using this ratio 
enables me to rewrite equation (5) as 

{s } o nk Z E Rm/a,1Z e-t3CRom/mnu(Grn) (10) 
/3 k # O  rn G 

I next determine the energy G that makes the largest contribution to the 
sum over G. 

Instead of the sum over G as written, consider for a moment  the 
normalized sum over all states {~,.} each contributing an amount  
e-S~ Y,k~o ~k(Gm), where G = E~  is a variable. This ensemble average 
is given by 

z e ~ (11) 
{abm} L k # O  / / { q ~ . , }  

This avearge is taken over an ensemble of  occupation numbers { ~ k }  that 
describe the states ~P,~ ~ {@~}. I am using sck instead of nk to emphasize the 
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independence of these occupation numbers. Each state contributes to the 
average with a weight e t3C[~kr 0 ~k(Grn)]. By dividing the sum over {dPm} 
into sums over G of sets {~Cm}, I get 

{(]~m } Lk#O 

E 
{r } 

2 

(~ . ,}  

=2 R(3,,,/,,, e-r Z r~k(Gm) 
(3 kr  

(12) 

It follows that the sum over G in equation (10) can be replaced by an 
evaluation of the ensemble average of equation (11). 

Equation (11) is evaluated by again partitioning the energy spectrum 
into cells with gj k-space levels per cell. A set of ensemble configurations 
is described by a set of cell occupation numbers {~}. The number of distinct 
states that satisfy this partitioning of spin waves is W{~}, as given before. 
The contribution to the sum made by states described by this partition is 
W{~} e -t~c ~k~o ~k(Gm). Since G is not fixed in the ensemble, I maximize 
this expression subject only to ~j ~ = m. This maximum is found by solving 
for s in the following variational expression: 

6(aO~-~(ln(W{~}e-t~(3 ~ o  t~k(Gm))+y ' (~  ~ - - m ) ) = 0  (13) 

where G = ~j ~jej and 6~:j is arbitrary. Notice that when the derivative of 
e -~(3 is taken, the same factor of -/3 enters the expression as would if there 
was a constraint on the energy with/3 the undetermined multiplier, except 
in this case/3 is known to be the inverse temperature. In order to evaluate 
the variation of Y~k~o r~u(Gm) I need its explicit functional dependence on 
G. This is obtained in the Appendix, with the result 

~k(Grn) = Rm(2) 
k # 0  

where Rm(i) is defined in the Appendix. With this I obtain 

In W{~}+ -/3 + - - [ - l n  G + 

= l n [  s%+ga-1-] -ea(/3-G-~)+ y ' = 0  (14) 

I I 

L J ~ 

This is a transcendental equation for ~:o, which I cannot solve in general. 
It is simplified by the following approximation. At low temperatures I only 
need the distribution of low-energy states. Therefore, I can solve (14) subject 
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to the condition that ~:a is the occupation number  for particles at a wavevector 
value a that is large compared to the lattice spacing. For a labeling a 
low-energy state (e~ < kaT), ~ will be greater than one and I can take 
e~ < ~:~e~. In light of  the additional condition s << G from equation (6), 
I set e~G -~ to zero and get 

-/3e~+ln[ -~ -3 , '  O= ~a 

Hence, 

~k(rn) - 1 
exp(/3ek + Y') -- 1 

where/3 is the actual inverse temperature and 3/is determined by Y,k ~k = m. 
The largest contribution to the energy sum comes from Gm= Y~k ~k(rn)ek. 
As is typical of  the ensemble method, selecting the value Gr~ from the sum 
over energies neglects fluctuations about the most probable value. The error 
is expected to be negligible at low temperatures. 

Equation (10) becomes 

< ~ nk~ =z-l~Rm/a,,[exp(-/3(~m)] ~ nk(Gm, m) (15) 
k # O  / / 3  m k # O  

Next, I replace the sum over m with the largest value of the summand.  
The ratio of  the number  of  states of  rn spin waves to the total number  of  
states is 

( m + N d  -- 1)!2-Nd (16) 
Rm/ali- m ! ( N d _ l ) !  

Using results from the theory of  Bose condensation, I will now show 
that ~k and (~ are essentially constant at low temperatures with respect to 
variations in m. Making the low-temperature approximations for the energy, 
e k ~ J k  2, and the cutoff, Q(m)= oo, I can write the constraint conditions 
that determine the chemical potentials 3' and 3" as (Huang, 1963, p. 200) 

N d  - 3  f~  k 2 dk 1 1 
- -  q ' i "  

m Jo "~m e~Jk2- 1 + N d A m - 1 

= [ J r l  3/= 1 1 
[_2~rJ g3/2(hTnl)q N a Am--1 (17) 

where Am = e ~, g , ( z ) = ~ , ~  1 (z'/rn), and g3/2(z <- 1)<- g3/2(1)-- 2.612 . . . .  

Since ~k(Y') is the same function of 3,' as r~k(y) is of  y, and since y and 3' 
are both determined by the same condition, it follows that 3' = Y', a =/3 
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(i.e., a equals inverse temperature),  and ~Tk(a, y') = JV~k(~, "y). Since g3/2(Z) <~ 
g3/2(1) and g3/2(1) is finite, the first term in (17) vanishes as T--> 0. There 
remains 

N d 1 1 
lim - Nd T~O rn Am - 1 

In the thermodynamic limit N d ~ o o ,  while Nd/m remains finite. This 
implies that h,, goes to 1 to keep the right-hand side from vanishing. This, 
in turn, implies that y (m)  is approximately zero for all finite particle 
densities: 

lim l i m h m = l  for all mN d~o (18) 
N ~ c o  T ~ 0  

This is the behavior we expect, for the following reason. A,, = 
1 + o rde r (N -a ) indicates a finite contribution to the density of  states in (17) 
from those states at k = 0, that is, spin-wave condensation is occurring. The 
thermal expectation value of the amount  of  condensation is, ignoring 
weighting factors, the sum of the amount of  condensation occurring at each 
density. Since a completely ordered state at T = 0 requires 100% condensa- 
tion, condensation must occur at all densities (A,, ~ 1 for all m) as T ~  0. 
This is the physical meaning of equation (18). 

Putting ')/m ~-In A,, ~ 0 in equation (15) allows me to consider Gm and 
rik(G,, ,m) independent of  m. Once I take the weighting factor 
exp(-/3(~m) ~k#0 nk(Gm, m) to be a constant, the value of m at which the 
greatest contribution is made is determined solely on the basis of  Rm/a11. 
Now, R,,,/a~l is proportional  to the binomial coefficient of  (m + N d) by m, 
which is strongly peaked a t  m = Nd/2. That is, there are far more ways to 
construct (Nd/2)-spin-wave states than there are for any other subspace. 
The expectation value becomes 

( ~ 0 n k )  =Z-I{exp[-flG( Nd/2)]) ~ nk(t~, y(Nd/2)) 
/3 k ~ O  

where I have replaced lYlk(G(Nd/2), N d / 2 )  with /~k(/~, 7(N~/2)). 
The normalization factor Z 1 remains to be evaluated. This is done by 

replacing the sum over states in Z with the single largest term, 

Z = 2 y Z e  ~G Y 
rn G { 4~ c, , ,  } 

The sum extends over the m-particle spin-wave states, for m = 0 , . . . ,  Nd/2. 
The factor of  2 is a consequence of the symmetry between spin- and 
anti-spin-wave states [cf. equation (3)]. The sum {qbom} is dominated by 
the state with occupation numbers given by r~k(G, m), as before. The relative 
contribution of states in subspaces of  different G is greatest at G =  
Y. ~k(m)ek, and the sum over m again reduces to the single term at m = Nd/2. 
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Thus, 2Z -1 ~exp[/3(7(Na/2)] ,  and I am left with 

ts 0 n k  ~ '  /~k( ]~ '  y(Nd/2)) 
# k ~ 0  

It is now necessary to solve for % A graph of y as a function of density 
and temperature, based the numerical solution of the constraint equation, 
is shown in Figure 1. It can be seen that y = 0 for all T < T'c = 1.95J/kB, 
which is to be expected from equation (18). Here T'c is the critical tem- 
perature as predicted by this low-temperature approximation (not the actual 
critical temperature) and represents the region near which the steepest- 
descent method that I have used is expected to give erroneous results. 
Setting 7 = 0, the final result is 

lim l i m ( ~  nk) = ~ r~k(/3,0) ~] 1/2 
N . c o  T- -0  0 fl k r  2 k ~ 0  exp(flek) -- 1 (19) 

and the low-temperature spin-wave (or anti-spin-wave) propagator is 

1/2 
(nk)~ -- exp(flek) -- 1 

4. ANALYTIC DERIVATION OF THE LOW TEMPERATURE 
MAGNETIZATION IN THE NONINTERACTING 
APPROXIMATION 

Consider the thermal average of the expectation value of the total spin 
component squared: 

(qbl(~ S J ) z l ~ ) - - - ~ [  -~-I-1 ] - ( ~ 0  Ink+ nk])(  N a -  k~o Ink§ ~k] § 1) 

(20) 
nk and 8k are evaluated with respect to the state gp. Here Sj is the three- 
component spin operator at a position site j = (jx, jy, j z) and the z component 

Fig. 1. Schematic of the two regimes 3'- 0 and 
3' > 0 of the chemical potential as a function of 
temperature and density based on the numerical 
solution of the constraint equation. 

z 

E 

OoJ 
J 

i 

T~ 
T 

~>o 



800 Stoller 

of the spin at each site is 1/2. Normalizing the expectation value and 
neglecting terms of order N -a, I get 

Take the magnetization M s to be the positive square root of (~2)~ 
measured in normalized magnetic units. Since 

(s (s04  o /3 /3 k~O 

and, in the present approximation, 4 (~k~O n~)~ = ~k~O n~(fl, 0), I have 

(M)~= 1 - 4  2N -~ 2 r~(~,0) 1 - 2 N  -" 2 ,~(~,0) 
k~0 k~0 

Making the low-temperature approximations ek--~Jk 2 and Q(Na/2)-~oe 
and replacing the sums with integrations gives 

[ (--~-~-fo ~ k 2 d k \ [  ~ - 3 f ~ 1 7 6  
( M ) ~ =  1 - 4  e~3kr-~--l)~l---4- Jo et~Jk~-l,]] 

= { 1 - 4(J/3 )-3/2RN-~/2(2)[ 1 - (J~)-3/2RN~/2(2)]}'/2 

[1 - 2(J/3)-3/ZRNd/2(2)] 

= 1 - CT 3/2 (21) 

C is given by 

2(J/k.)-3/2RN~/2(2) = (J/k,)-3/2~'(3/2)/4 

Equation (21) takes into account all features of the free spin-wave model 
and reproduces the coefficient and power of T in the Bloch law for low 
temperature magnetization (Bloch, 1930, 1932; Wagner, 1972, p. 180). 

5. N U M E R I C A L  INVESTIGATION OF THE 
LOW-TEMPERATURE MAGNETIZATION 

The expectation value of Mt~ to first order in Y~k.o t~k is evaluated using 
Monte Carlo methods, 

k~0 

aThe variational equation for determining the term that contributes the most to the expectation 
value (n2k)t3 differs from that for (nk)~ in that the former contains the term 2 ln[nk(qb)], while 
the latter contains only ln[nk(~)]. Terms of this order are neglected, however, in comparison 
to terms of order nk(~) ln[nk(qb)] from Stirlings approximation. As a result of this approxi- 
mation the same state ~(13) makes the largest contribution to both expectation values. 
Consequently (n~)t~ " 2 2 
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Since the Monte Carlo result is built of  contributions from all the sums 
over subspaces rather than just a single term, obtaining the T 3/2 behavior 
from a Monte Carlo simulation substantiates the ensemble approximations 
of  Sections 3 and 4. 

The magnetization values I obtain for finite systems are accurate to an 
estimated 0.1%. However, the Monte Carlo technique cannot deal with 
infinite-size systems and as a consequence the N = 0o extrapolations are 
subject to additional uncertainties. These uncertainties are of  three kinds. 
First, since it is necessary to extrapolate to values of  N outside the range 
that can be explored numerically, the errors at N = ~ are larger than the 
errors of  the computed values. Second, the size dependence of the results 
is not known exactly and is arrived at by fitting the data to a straight line 
in 1/N.  Errors are introduced if the exact size dependence is not linear in 
1/N. Third, finite-size effects are manifested in the energy spectrum, which 
I now discuss. 

In a finite-size quantum system the energy levels are discrete. In 
particular, we have a gap between the ground and the first excited states 
given by el = J[1 - cos(27r/N)] ,  which goes to zero a s  N -2. As a result, for 
kBT < el (N)  the population of the ground state is greater, and the popula- 
tion of the excited states less, than what would be the case in the infinite-size 
system. Since the magnetization at low temperatures varies directly with 
the number  of  excited states, this means that M s ( N )  goes to its saturated 
value more rapidly for smaller values of  N. At T<< el(N)/kB the number  
of  excited states goes to zero as exp[-f lel(N)] and the reduced magnetiza- 
tion differs from one by an exponentially small amount. In this region, 
finite-size effects are dominant  and the power-law behavior I hope to observe 
is lost. To avoid being misled by this effect, the analysis only includes 
magnetization values at T > - el( N ) /  kB. 

The validity of  the lowest order in T approximation requires kB T / J  << 1. 
As T approaches J/kB, nonlinearities will appear  in M s ( N  ). However, 
these nonlinearities are weak because, as will be seen, the data fit the linear 
approximation to within statistical accuracy up to temperatures of 0.6J/kB. 

The details of  the Monte Carlo algorithm I have used are discussed 
elsewhere (Stoller, 1987b), so it will suffice to note the tests used to check 
the algorithm and results. A version of the algorithm was written in position 
space, using the classical Hamiltonian, and reproduced magnetization 
curves for finite classical Heisenberg systems (Binder and Miiller- 
Krumbhaar ,  1973). The present results were obtained by updating in 
wavenumber  space. The wavenumber  algorithm reproduced the magnetiza- 
tion and susceptibility curves for a quantum model with a simpler cutoff 
than that of  equation (I.30), which was solved exactly for N = 3. The results 
passed standard tests for equilibration and ergodicity, which consist in 
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Fig. 2. Low-temperature magnetization as a 
function of temperature. Lines of the linear least 
squares fits begin with the largest systems on the 
left and go to the smallest systems on the right. 
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Fig. 3. Extrapolation of the low-temperature 
magnetization exponent based on the finite-size 
results. 

c h e c k i n g  f o r  c o r r e l a t i o n s  a m o n g  s e c t i o n s  o f  a s i n g l e  l o n g  run .  T h e  s i m u l a t i o n  

was  r u n  u n t i l  t h e  m a g n i t u d e s  o f  r e l a x a t i o n  effects ,  b a s e d  o n  t he  m e a n  a n d  

d i s p e r s i o n  in  t h e  m a g n e t i z a t i o n ,  i n d i c a t e d  t h a t  l o n g e r  r u n s  w o u l d  n o t  l e a d  

to  v a l u e s  d i f f e r e n t  f r o m  t h o s e  I a m  r e p o r t i n g  b y  m o r e  t h a n  t h e  e r r o r s  g iven .  

T h e  e x p o n e n t  x f r o m  T x in  e q u a t i o n  (21)  is c o n v e r t e d  to  a s l o p e  b y  

t a k i n g  t h e  l o g a r i t h m  o f  e q u a t i o n  (21) :  

l n ( 1 - M )  = l n  C + x l n  T 

Table I. Comparison of the Analytic and Monte Carlo Results for the 
Low Temperature Magnetization Exponents in the Thermodynamic Limit 

Monte Carlo 
Analytic: 

Bose and spin wave Boson state space Spin-wave state space 

1.5 1.525 • 0.030 1.506 i 0.035 
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where M is obtained by dividing the magnetization at T by its value at 
T = 0. The data for In(1 - M )  versus In T are plotted in Figure 2 for cubes 
of N = 7 ,  9, 11, 13, 19, and 23 sites per side. Each data point represents 
between 5000 (for N = 23) and 40,000 (for N = 7) system updates, giving 
magnetization values to estimated accuracies of 0.01% at the lowest tem- 
peratures to 0.07% at the highest temperatures. 

Computations were also carried out on a purely boson system that had 
no constraints on the state space. In this case we know that the exact 
exponent is 3/2 and the results serve as another means of verifying the 
accuracy of the algorithm. In total, the computations required 25 hr (after 
debuging) on the Control Data Dual Cyber computer at the University of 
Texas at Austin. 

The values of the exponent at N - -  ~ are obtained by extrapolating in 
1/N from the exponents for finite systems, as shown in Figure 3 for both 
the Bose and spin systems. 

The extrapolated are listed in Table 1. The error bounds of one standard 
deviation are obtained by assuming that the nonlinearities in the dispersion 
of the exponents about the regression lines of figure 3 are due to normally 
distributed, random errors. 

A P P E N D I X .  T H E  E N E R G Y  D E P E N D E N C E  OF tik AT 
LOW T E M P E R A T U R E  

The calculation determining the Lagrange multiplier a (G) is 

(_~  +o(,,,)/2'~ 
a y , z  k a = - Q ( r n ) / 2 /  

Separating out the contribution from k = 0 and taking the thermodynamic 
limit, we can write the remaining sum as an integral over k space: 

Q(m)/2 

. e~'e ~k - 1 
k = - O ( m ) / 2  

When c~ >> J, large values of k are effectively surpressed, so I can use a 
small-k approximation to the energy, ek ~ Jk  2, and take Q(m)/2 to infinity. 
Since 7 is a function of m, I write e ~ = Am. Making a substitution of variables 
gives 

- 7  

=_ (Jcr)-5/2Rm(4) 
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Hence, 
__,[Rm(4)'~ 2/5 

=" t , - -V- )  

This shows that the approximation of large a is good for sufficiently small 
G, which is realized at low temperatures. That is, as T-~ 0, the value of G 
that contributes most to the thermal expectation value goes to 0. 

Applying this to ~k#O r~k(G, m) gives 

3.1.--2 leo k 2 dk 
nk(G, m) ~---~- / A e :T&)~-2- 

k # O  dk=O m 1 

: (J~ --"~ r~176 _ T  x4dx  ~ 
J~=o ~.,.e -1]  

[ Jol( G ) ]-3/2 e m (  2 ) 

Finally, 
( _ ~ )  -3/5 

Y. Bk(G, m ) ~  Rm(2) 
k~'O 
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